skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gunsilius, Florian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The idea of summarizing the information contained in a large number of variables by a small number of “factors” or “principal components” has been broadly adopted in statistics. This article introduces a generalization of the widely used principal component analysis (PCA) to nonlinear settings, thus providing a new tool for dimension reduction and exploratory data analysis or representation. The distinguishing features of the method include (i) the ability to always deliver truly independent (instead of merely uncorrelated) factors; (ii) the use of optimal transport theory and Brenier maps to obtain a robust and efficient computational algorithm; (iii) the use of a new multivariate additive entropy decomposition to determine the most informative principal nonlinear components, and (iv) formally nesting PCA as a special case for linear Gaussian factor models. We illustrate the method’s effectiveness in an application to excess bond returns prediction from a large number of macro factors. Supplementary materials for this article are available online. 
    more » « less